Role of climate change in global predictions of future tropospheric ozone and aerosols

نویسندگان

  • Hong Liao
  • Wei-Ting Chen
  • John H. Seinfeld
چکیده

[1] A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II0 is applied to simulate an equilibrium CO2forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O3 and aerosol burdens predicted with changes in both climate and emissions are generally 5– 20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO2-driven climate change alone is predicted to reduce the global O3 burden as a result of faster removal of O3 in a warmer climate, it is predicted to increase surface layer O3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O3 production by increased water vapor at high NOx levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and aerosols from both natural and anthropogenic sources, year 2100 global mean top of the atmosphere direct radiative forcings by O3, sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, 0.72, 1.0, +1.26, and 0.56 W m , respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, 0.72, 0.74, +0.97, and 0.58 W m , respectively, with year 2100 climate and emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols

[1] We explore the extent to which chemistry-aerosol-climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II’ with on-line simulation of tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic ca...

متن کامل

Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal

[1] Tropospheric ozone and aerosols are radiatively important trace species, whose concentrations have increased dramatically since preindustrial times and are projected to continue to change in the future. The evolution of ozone and aerosol concentrations from 1860 to 2100 is simulated on the basis of estimated historical emissions and four different future emission scenarios (Intergovernmenta...

متن کامل

Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone

Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammoniumsulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gasand aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario...

متن کامل

On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location

[1] Biomass burning is a major source of air pollutants, some of which are also climate forcing agents. We investigate the sensitivity of direct radiative forcing due to tropospheric ozone and aerosols (carbonaceous and sulfate) to a marginal reduction in their (or their precursor) emissions from major biomass burning regions. We find that the largest negative global forcing is for 10% emission...

متن کامل

Quantifying Uncertainty in the Attribution of Recent Climate Change (quarcc)

One of the objectives of the QUARCC project is to investigate the robustness of recent reports of an anthropogenic innuence on global climate through the application of a consistent optimal detection and attribution methodology to a wider range of alternative climate change mechanisms and a wider range of model predictions and observational data sources than have been addressed to date. The act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006